A Parallel hp-Adaptive Discontinuous Galerkin . Method for Hyperbolic Conservation Laws
نویسندگان
چکیده
This paper describes a parallel adaptive strategy based on discontinuous hp-finite element approximations oflinear, scalar, hyperbolic conservation laws. The paper focuses on the development of an effective parallel adaptive strategy for such problems, Numerical experiments suggest that these techniques arc highly parallelizablc a.nd deliver super-linear rates of convergence, thereby yielding efficiency many times superior to conventional schemes for hyperbolic problems.
منابع مشابه
hp-VERSION DISCONTINUOUS GALERKIN METHODS FOR HYPERBOLIC CONSERVATION LAWS: A PARALLEL ADAPTIVE STRATEGY
This paper describes a parallel algorithm based on discontinuous hp-finite element approximations of linear, scalar, hyperbolic conservation laws. The paper focuseson the development of an elTcctiveparallel adaptive strategy for such problems. Numerical experimeOlssuggest that these techniques are highly parallelizable and exponentially convergent, thereby yielding cflicien.:yIllany times super...
متن کاملhp-Version discontinuous Galerkin methods for hyperbolic conservation laws
Thc devclopment of hp·version discontinuous Galerkin methods for hyperholic conservalion laws is presented in this work. A priori error estimates are dcrived for a model class of linear hyperbolic conservation laws. These estimates arc obtained using a ncw mesh-dependcnt norm that rel1ects thc dependcnce of the approximate solution on thc local element size and the local order of approximation....
متن کاملSpectral/hp Element Method with Hierarchical Reconstruction for Solving Nonlinear Hyperbolic Conservation Laws
The hierarchical reconstruction (HR) [Liu, Shu, Tadmor and Zhang, SINUM ’07] has been successfully applied to prevent oscillations in solutions computed by finite volume, Runge-Kutta discontinuous Galerkin, spectral volume schemes for solving hyperbolic conservation laws. In this paper, we demonstrate that HR can also be combined with spectral/hp element method for solving hyperbolic conservati...
متن کاملParallel , Adaptive Finite Element Methods for Conservation Laws
Abstract: We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solutio...
متن کاملA Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws
Abstract. In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994